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First things first

* The driving force behind this work has been a
former PhD student

* A chapter in Masoud’s thesis, which is also
published in HESS as:

Zaerpour, M., Hatami, S., Sadri, J., & Nazemi, A.

(2021). A global algorithm for identifying
changing streamflow regimes: application to
Canadian natural streams (1966—2010).
Hydrology and Earth System Sciences, 25(9),
5193-5217.

Masoud Zaerpour |

University of Calgary Contacts

(ucalgary.ca)



https://contacts.ucalgary.ca/info/enci/profiles/1-12246936
https://contacts.ucalgary.ca/info/enci/profiles/1-12246936
https://contacts.ucalgary.ca/info/enci/profiles/1-12246936
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Motivation and context

e Streamflow regime is changing during the “Anthropocene”
Stressors

* Climate change
e Human intervention in land and streams

Climate change impacts in cold regions

* Changes in the form of precipitation
* Changes in the amount of precipitation
* Changes in the hydrological processes

“A river is the report card for its watershed”

Alan Levere
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Problem definition

e Streamflow regime is constituted by
multiple streamflow characteristics 2
multiple dimensions

 Shift in natural streamflow regimes over
landscape in rather gradual than sharp 2
Level of association.

* Climate change induced alterations in
streamflow regime are caused by
multiple physical processes that may not
be easily distinguished from one another
- multiple attributes

* Climate change induced transition from
one streamflow regime to another is
rather gradual than sharp = existence of
trend

VS.
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Breakthrough

* Regime is identified by the changes in long-term
annual streamflow hydrograph and the variability

Feature Notation Feature Notation Feature Notation Feature Notation Feature Notation
October mean  Mean: x; November Mean: x5 December  Mean: x3 January mean Mean: x4 February mean Mean: x5
flow Variance:y mean flow Variance: y» mean flow  Variance: y3 flow Variance: y4 flow Variance: ys
March mean Mean: xg April mean Mean: x7 May mean  Mean: xg June mean Mean: xg July mean Mean: x10
flow Variance: yg flow Variance: y7 flow Variance: yg flow Variance: yq flow Variance: yjq
August mean Mean: x| September  Mean: xo Annual Mean: x3 Timing of the Mean: x4 Timing of the Mean: x5
flow Variance: y;;  mean flow Variance: y;o  flow Variance: y;3  annual low flow  Variance: yi4  annual high flow  Variance: yq5

e Distinction between streamflow are fuzzy rather
than sharp. !

Aq Az As

* Temporal transition in streamflow regime in a given
stream can be identified by the trend in
belongingness of streamflow regime to a set of
known reference regime. TeR
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Case study
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Major Basin Sub-basin Area (1000 km®)  # of stations  Abbreviation
Yukon 3304 4 Pl
. Seaboard 334.2 .1 P2
Pacific Fraser 2325 8 P3
Columbia 102.8 10 P4
Seaboard 4997 28 Atl
Atlantie St. Lawrence B60.1 16 A2
Saint John- St Croix 419 5 ALl
Seaboard 1,739.3 2 Arl
Arciic Lower Mackenzie 1,321.1 7 Ar2
Peace Athabasca 4827 k] Ard
Western & Northern HB 1,243.9 3 H1
Hudson Bay Morthern Quebec & Ontario 1,889.2 3 H2
Nelson 1,138.5 ] H3
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Methodology

Selecting streamflow features
- Select a set of streamflow characteristics that collectively
represent annual streamflow regime (Sect. 2.2).

Analyzing the trends in degrees of membership

- Apply a moving window with the same length as the
baseline period over the entire time series data to sample
consecutive time intervals, comparable with the baseline
period.

- For each time interval and at each stream, calculate the
degree of membership to each regime type (Eq.3).

- Quantify trends in membership anomalies (Sect. 2.4).

v

Analyzing transformation in flow regimes

- At each stream, identify regime types with divergent trends
in degrees of membership.

- Calculate the rate of change in regime types using Eq.7.

- Identify regime types with highest rates of change as
dominant modes of transformation in streamflow regimes.

Clustering streamflow regimes

- Considering a common baseline period for all streams and a
predefined number of clusters, estimate cluster centres and
associated cost functions (Egs. 2a, 2b, 2c).

- Identify the optimal number of clusters, i.e. regime types.

- Using the optimal number of regime types, calculate the
membership degrees at each stream (Eq. 3), which show the
belongingness to each regime type during the baseline period.

—————————————:——————

Attribution of regime shift

Analysis of co-occurrence with streamflow characteristics
- At each stream, calculate the coefficient of determination (R?)

between dependent pairs of streamflow features and membership

degrees and identify those with highest R? as the dominant

changing features that lead to changes in the streamflow regime.
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Fuzzy clustering
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Detection of change in streamflow regime
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Attribution and shift detection
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Streamflow types in Canada
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Streamflow types in Canada and their changes
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Streamflow types in Canada and their changes
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Regime shifts
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Attribution to changes in streamflow characteristics

Regime shift
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Validation
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Validation

. Trends i bershi Direction of shift in Attribution of regime shift
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Validation

Sen's slope in the anomalies of memberships
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Verification

Basin  Sub-basin (stream loca-  Dominant regime shifts ~ Earlier findings on changes in streamflow char- New findings on changes in streamflow charac-
tion) acteristics teristics
(reconfirmed in this study) (discovered exclusively in this study)
Yukon C3toCl Earlier timing of low and high flows; greater Increasing flow in September; increasing flow
variability in timing of high flows (Burn, 2008;  variability in April and May
Brabets and Walvoord, 2009; St. Jacques and
Sauchyn, 2009)
Seaboard (north) CltoC2 Increasing winter flows (Déry et al., 2009) Increasing monthly flow in May; earlier tim-
ing of low flow; increasing variability in March,
May, and annual flows
Seaboard (south) CliwoC3 Decreasing annual and monthly flows from Delayed and more variable timing of annual
April to June; decreasing flow in fall (Déry et low flow; increasing variability in February’s
al., 2009; Pike et al., 2010) monthly flow
Fraser (north) Case 1: Cl to C2 No earlier study in this region found Case 1: increasing mean of and variance in
Case 2: C2 to C1 annual and summer flows; increasing monthly
flows in May and June; increasing variation in
sE timing of low flow and the quantity of spring
n% flows. Case 2: decreasing mean of and vari-

ance in annual flow; decreasing monthly flows
in July and October; earlier timing of high flow;
decreasing variability in monthly flows in May,
August, and September

Fraser (south) C2to C5 Decreasing summer flows (Stahl and Moore, Earlier timing of high flows; increasing mean
2006); Increasing variability in monthly flows  monthly flows in November and April
in November and April (Déry et al., 2012;
Thorne and Woo, 2011)

Columbia (north) C2toCl Decreasing annual and summer flows (Stahl and ~ Decreasing variability in annual flow and
Moore, 2006; Fleming and Weber, 2012; Forbes ~ monthly flows of August and September
etal., 2019)

Columbia (south) CltoC3 Increasing flow in April and decreasing flow in ~ Delayed timing and greater variability in the an-

September (Whitfield and Cannon, 2000; Whit-
field, 2001); earlier timing of high flow (Burn
and Whitfield, 2016; Burn et al., 2016)

nual low flow; increasing mean of and variance
in November’s flow
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Conclusion and further remark

* The first consistence (temporally and spatially) pan-Canadian study on
understanding climate-change induced changes in streamflow regime.

* A globally-relevant algorithm was provided to (1) cluster streamflow regime
based on the characteristics of the annual streamflow hydrograph, (2) detect
regime shift and understanding where the regime is approaching, (3) attribute
regime shifts to changes in the streamflow characteristics.

* While changes in regime was attributed to changes in streamflow
characteristics, we know that changes in streamflow characteristics are caused
by changes in hydrological processes.

* What are the hydrological causes of the shifts?

Show must go on...
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Dedication

* This study is dedicated to
the memory of Richard
Janowicz, the iconic
Yukon-based hydrologist
who made fundamental
discoveries on recent
changes in natural

streamflow regimes in the
Great White North.

:

Northern hydrology owes St o :
you, Ric... Richard Janowicz

1953-2018
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