TRACER LES SOURCES DE CONTAMINATION FÉCALE DE L'EAU

ANIMAL SOURCE TRACKING BY MITOCHONDRIAL METAGENOMICS: APPLICATION FOR FECAL CONTAMINATION IN SURFACE WATERS

Rose Ragot, doctorante

Richard Villemur, Professeur titulaire

INRS Centre Armand-Frappier Santé Biotechnologie

Published: 08 January 2022

eDNA profiling of mammals, birds, and fish of surface waters by mitochondrial metagenomics: application for source tracking of fecal contamination in surface waters

Rose Ragot & Richard Villemur □

Environmental Monitoring and Assessment 194, Article number: 72 (2022) Cite this article

Feces

- Result from food digestion
- Composed of
 - Host cells
 - Microorganisms (bacteria, protozoan, viruses)
 - Digestion remains
- 55% dry weight : microorganisms
 - >500 bacterial species
 - Essential for digestion
- Some microorganisms are pathogens

Fecal contamination

- High potential of dispersion of pathogens
- In surface waters and groundwater
 - Contamination of sources of drinkable water
 - Recreational impacts (e.g. beach closure)
 - Food safety (e.g. Irrigation)
- => Public health and economical issues
- 2 billion people use water points contaminated with feces.
- Recurrent epidemics: Giardiosis, Cryptosporidiosis, Cholera, Gastroenteritis etc.
- Contaminated water responsible for more than 485,000 deaths per year according to the WHO.

Fecal contamination detection

- Impossibility to detect all pathogens
 - Cost
 - Too many
 - Low concentration
 - Detection method Inefficiency for some
- Instead : Monitor fecal indicator bacteria (FIB)
 - Provide indication that fecal contamination occurred
 - May indicate probability of the presence of pathogens

FIB (or viruses)

- Coliformes
- Bifidobacterium, Enterococcus, Bacteroides
- Enteric viruses (Adenovirus, enterovirus, norovirus)
- Phages
- The FIB cannot tell about the animal source
 - Most microorganisms are present in feces of animals

Many sources

- Contamination diffuse
- Sampling sites far from the contamination source

Wild

birds (e.g. geese) Municipal

- Wastewater treatment plants
- Leaking septic tanks
- Sanitary sewer overflows

Agriculture

Manures

Pathogens

Source tracking markers

- Biochemical markers
 - Fecal sterols
 - Trace of detergent (bleaching agent)
 - Caffeine
- Microbial markers
 - Animal specific microorganisms
- > Target specific genetic elements of these microorganisms
 - PCR amplification technology
- Good knowledge of the microbial biota of the animal feces
 - Not obvious with wild animals
 - Can be variable in geographical distribution and could depend of alimentation of the animals

Mitochondrial DNA as Source tracking markers

Gastrointestinal epithelium

- 50 billions of cells
- Renewed each 3-4 days
- 10 billions of cells dejected in the lumen
- Represent 10% of dry weigth feces.

Vertebrate mitochondrial genome (mtDNA)

- Substantial differences between close animal species
 - 9% differences between human and chimpanzee.

Problematic

- Multiple sources of fecal contamination
 - Human activities overlapped (municipal vs agricultural areas)
 - Wild animals also involved
- Multiple specific markers to develop
- Multiple PCR to carry

New approach

- With high-throughput sequencing methods, it is now possible to sequence a PCR product with a multitude of sequences
- Found PCR primers targeting vertebrate mtDNA
- Discriminate animal species by sequencing

Chosen animals

- Occurrence of mammals and birds in North America
 - human, domestic animals (cat, dog), livestock (swine, bovine, ovine, poultry, and farm-raised exotic animals such as Ilama, ostrich, and emu).
- Wild terrestrial animals that are commonly encountered on riverbanks
 - Birds (e.g., goose, ducks, and gulls), raccoon, muskrat, beaver, elk, caribou, and deer.
- Other mammalian and bird species to broader the diversity.
- Fish species chosen for their occurrence in the rivers of the Province of Quebec and in aquaculture were also included.
- The inclusion of fishes in our study was to assess the importance of their mtDNA in the river samples
- 126 mitochondrial genomes
 - 46 bird species
 - 62 mammals
 - 12 fish species

PCR primers

- Alignment of the 126 genomes
- One region fit the criteria: mitochondrial 16S ribosomal RNA (rRNA) gene

Gray: Nucleotides found in the 126 genomes

Dot: Nucleotides specific for each lineage

Strategy: Nested PCR

Possibility of qPCR assay

PCR products generated by primers targeting the mitochondrial 16S rRNA genes

- Agarose gel electrophoresis
- No non-specific amplification

Percentage of mitochondrial genomes containing the consensus sequences

Lineages		metaUni126F	metaUni126R	qUni126R
Mammalia		100.0%	99.9%	99.8%
Lepidosauria Archelosauria	Snake, lizard	48.5%	21.7%	73.8%
Testudines	Turtle	94.9%	96.5%	95.1%
Archosauria	Bird, procodilian	94.0%	98.0%	94.4%
Amphibia		51.3%	52.1%	88.9%
Actinopterygii	Ray-finned fish			
Euteleosteomorpha	Bony fish	92.6%	93.2%	96.0%
Otomorpha		6.9% 1	98.7%	98.8%
others		92.5%	100.0%	100.0%
Chondrichthyes	Cartilaginous fish	89.7%	89.3%	90.5%
Cyclostomata	Fish no jaw	84.6%	78.6%	73.3%
<u>Insecta</u>		0.4%	0.1%	0.0%

Sampling process

- Water samplings (100-500 mL)
- Filtering and DNA extraction
- PCR amplification and sequencing by Illumina technology Miseq PE-250
- Sequence clustering (dada2 and CD-HIT-EST at 95% identity for species affiliation)

Sampling areas

Témiscamingue watershed 27 samples, November 2020.

L'Assomption watershed 59 samples 2019 to 2020.

Bayonne River (C94)

L'Assomption River (C43)

Dumais Stream-Témiscamingue (L16)

Bastien Stream-Témiscamingue (L17.3)

Inflow of a wastewater treatment plant

Concentrations of FIB and mtDNA source tracking markers

				qPCR				
Samples		Coliform	Enterococci	Human mtDNA	Bovine mtDN	A		
-		CFU/100 mL	CFU/100 mL	copies/100 mL	copies/100 mL	<u>, </u>		
	River				_			
C43	L'Assomption	>30 000	900	2350	230	Fecal		
C94	Bayonne	>30 000	400	900	<lod< td=""><td>contamination</td></lod<>	contamination		
					J			
	Streams				٦			
L16	Dumais	151	ND	<lod< td=""><td><lod< td=""><td>Cloan</td></lod<></td></lod<>	<lod< td=""><td>Cloan</td></lod<>	Cloan		
L17.3	Bastien	3	ND	<lod< td=""><td><lod< td=""><td>Clean</td></lod<></td></lod<>	<lod< td=""><td>Clean</td></lod<>	Clean		
					J			
Raw wastewater (inflow of a wastewater treatment plant)								
C65	Rosemère	>30 000	19250	2 440 000	4050			

<LOD: below the limit of detection

ND: not done

L'Assomption and Bayonne Rivers

Rhinichthys cataractae* longnose dace 17.8% Micropterus dolomieu Smallmouth bass 14.5% Etheostoma olmstedi Tessellated darter 11.4% Catostomus commersonii* white sucker 9.6% Etheostoma flabellare Fantail darter 8.1% Ictalurus punctatus* Channel catfish 6.0% Percopsis omiscomaycus Trout-perch 3.4% Ambloplites rupestris Rock bass 2.9% Perca flavescens American yellow perch 2.7% Esox Lucius Northern pike 2.4% Semotilus atromaculatus* Creek chub 2.0% Pimephales notatus* Bluntnose minnow 1.7% 1.1% Sander vitreus Walleye Cyprinella spiloptera* Spotfin shiner 0.92% Aplodinotus grunniens Freshwater drum 0.83% Hiodon tergisus Mooneye 0.65% Ameiurus nebulosus* Brown bullhead 0.62% Cyprinus carpio* Common carp 0.56% Pimephales promelas* Fathead minnow 0.39%

Micropterus dolomieu Smallmouth bass 23.2% Moxostoma anisurum* silver redhorse 6.3% Etheostoma nigrum Johnny darter 3.4% 2.7% Percina caprodes Logperch 2.5% Cyprinus carpio * Common carp Notropis volucellus* Mimic shiner 2.1% Rhinichthys cataractae* longnose dace 1.8% Sander vitreus Walleye 1.5% Esox masquinongy Muskellunge 1.4% Catostomus commersonii* white sucker 1.10% Cyprinella spiloptera* Spotfin shiner 1.04% 1.03% Hybognathus regius* silvery minnow Noturus flavus* Stonecat 0.99% Poecilia reticulata Guppy 0.63% Ictalurus punctatus* Channel catfish 0.40% 0.17% Etheostoma olmstedi Tessellated darter Semotilus corporalis* Fallfish 0.084% Perca fluviatilis Perch 0.077% 0.010% Luxilus chrysocephalus* striped shiner

Warning!!!!

- Values are given in relative level (%).
- Tell nothing about the absolute concentration
- qPCR is required

Bastien and Dumais streams

Semotilus atromaculatus* creek chub 18.6%
Rhinichthys cataractae* longnose dace 12.1%
Etheostoma nigrum Johnny darter 1.4%
Luxilus chrysocephalus* striped shiner 0.58%
Catostomus commersonii* white sucker 0.21%

27.9% Culaea inconstans brook stickleback Semotilus atromaculatus* creek chub 6.3% Catostomus commersonii* white sucker 4.6% Luxilus chrysocephalus* striped shiner 0.98% Pimephales notatus* bluntnose minnow 0.24% 0.20% Cottus cognatus slimy sculpin Lithobates clamitans bronze frog 0.14% Moxostoma anisurum* silver redhorse 0.009%

Wastewater

- Other animals: domestic animals (cat and dog), meat waste and undigested meat.
- May have an incidence on the animal profile in contaminated water

Covariation: species vs environmental factors

Redundancy analyses (RDA) 86 samples

- Coliforms, rainfall and watershed are variables that significantly explain the occurrence and abundance of the different animals.
- 3 bird species, cattle and pigs strongly covary with coliforms and precipitation.
- Muskrat and beaver are geographically dependent (high proportion in Témiscamingue) and do not covary with coliforms.
- Human occurred in 88% of samples and clustered apart from the other animals.
- This suggests that other factors influenced the occurrence of human is water (e.g. presence of beaches, treated water outlets, type of treatment, number of inhabitants, etc.)

Conclusions

- We designed new PCR primers to amplify mtDNA from mammals, birds and fish (in some extent amphibian) from environmental DNA
- Sequencing the amplicon by Illumina and clustering analysis, this provides an powerfull tool to derive the profiles of these animals in watershed (or whatever the environment).
- This allows to assess the potential source of fecal contamination, which could occur from different animals.
- Such identification can allow to develop better strategies by the watershed management authorities in mitigating the contamination at their sources.

Conclusions

- Regarding fish profile, this can provide indication of its environmental health or anthropic pressures.
- Knowing the proportion of mtDNA from specific fish species can be useful for the temporal follow up of these species in a given river.
- Our approach has the potential to survey rapidly and repeatedly the composition of fishes in the rivers or lakes, and also survey the terrestrial animals surrounding these waters.
- This information can be valuable in lake and river management for the evolution of invasive species for instance, or for recreational purpose (e.g. fishing activities).

Remerciements

- Rose Ragot, doctorante
- Florence Lessard, Fondation Rivières
- André Bélanger, Fondation Rivières
- Yves Grafteaux, OBVT
- Lawrence Gervais, OBVT
- CRSNG et la Fondation Rivières pour le financement